Ideal Fréchet–Urysohn property of a space of continuous functions

Serhii Bardyla, Jaroslav Šupina¹², Lyubomyr Zdomskyy

¹University of Vienna

Kurt Gödel Research Center for Mathematical Logic scholarship OeAD-GmbH ICM-2020-00442 Aktion Osterreich-Slowakei ¨

²UPJŠ Košice

Institute of Mathematics Faculty of Science P.J. Šafárik University in Košice Slovakia

RIMS 2020

(1) Gerlits–Nagy problem on γ and δ .

(2) Borodulin-Nadzieja–Farkas pseudointersection number $\mathfrak{p}_K(\mathcal{J})$.

A topological space Z.

Subset $A \subseteq Z$.

Point $a \in \overline{A}$.

Is there a sequence $\langle a_n : n \in \omega \rangle$ in A converging to a?

 Z is a metric space: YES

ightharpoonton a ball centered in a and radius $\frac{1}{2^n}$

 a has a countable base of neighbourhoods (Z first countable): YES

A topological space Z.

Subset $A \subseteq Z$.

Point $a \in \overline{A}$.

Is there a sequence $\langle a_n : n \in \omega \rangle$ in A converging to a?

A topological space Z has **Frechet-Urysohn property** if for any subset $A \subseteq Z$ and point $a \in \overline{A}$ there is a sequence $\langle a_n : n \in \omega \rangle$ in A converging to a.

Metric space and first countable space have Fréchet-Urysohn property.

Topology on a family of functions

 $X\mathbb{R}$ denotes the family of all real-valued functions on X.

 $X\mathbb{R}$ may be equipped with topology such that a sequence of functions $\langle f_n : n \in \omega \rangle$ converges to function f if and only if it converges pointwisely, i.e., $\langle f_n(x) : n \in \omega \rangle$ converges to $f(x)$ in each $x \in X$.

topology of pointwise convergence = Tychonoff product topology

 X a topological space.

 $C_n(X)$ denotes the family of all continuous functions on X.

Inherited topology on $C_p(X) \subset X\mathbb{R}$.

If X is a discrete topological space then $C_p(X) = X\mathbb{R}$.

Basic open neighbourhood of 0 in $C_p(X)$. $\varepsilon > 0$, $x_0, \ldots, x_k \in X$

$$
[\varepsilon; x_0, \dots, x_k] = \{ g \in C_p(X) : |g(x_0)| < \varepsilon, \dots, |g(x_k)| < \varepsilon \}
$$

We assume $X \subseteq \mathbb{R}$.

Does $C_p(X)$ possess Fréchet-Urysohn property?

What is the role of X in $C_p(X)$ possessing Fréchet-Urysohn property?

Local property of $\mathrm C_p(X)$.

↑↓

Property of X.

Theorem 2. Let X be a Tychonoff-space. If $E = C(X)$, then the following implications are valid.

$$
E = C(X) \qquad (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi)
$$

$$
\updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow
$$

$$
X \qquad (a) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta) \Rightarrow (\epsilon)
$$

What is the role of X in $C_p(X)$ possessing Fréchet-Urysohn property?

 $C_p(X)$ has **Frechet-Urysohn property** if for any subset $A \subseteq C_p(X)$ and function $f \in \overline{A}$ there is a sequence $\langle f_n : n \in \omega \rangle$ in A converging to f.

Basic open neighbourhood of 0 in $C_p(X)$. $\varepsilon > 0$, $x_0, \ldots, x_k \in X$

$$
[\varepsilon; x_0, \dots, x_k] = \{ g \in C_p(X) : |g(x_0)| < \varepsilon, \dots, |g(x_k)| < \varepsilon \}
$$

 $C_p(X)$ has **Frechet-Urysohn property** if and only if for any subset $A \subseteq C_p(X)$ and function $\mathbf{0} \in \overline{A}$ there is a sequence $\langle f_n : n \in \omega \rangle$ in A **converging to** 0.

 ${f_n : n \in \omega} \subset C_n(X), \varepsilon > 0$

$$
V_n = \{ x \in X : |f_n(x)| < \varepsilon \}
$$

 \blacktriangleright 0 \in $\overline{\{f_n : n \in \omega\}}$

 ${V_n : n \in \omega}$ forms a cover of X, called ω -cover, i.e., each finite subset of X is covered by some V_n .

 \blacktriangleright $\langle f_n : n \in \omega \rangle$ converges pointwisely to 0

 $\{V_n: n \in \omega\}$ forms a cover of X, called γ -cover, i.e., each $x \in X$ is an element of V_n for all but finitely many n .

X is **a** γ -set if any open ω -cover of X contains an open γ -subcover of X.

Does $C_p(X)$ possess Fréchet-Urysohn property?

Theorem (Gerlits–Nagy 1982)

 $C_p(X)$ possesses Fréchet-Urysohn property if and only if X is a γ -set.

Theorem (Galvin–Miller 1984)

- **If** $|X| < p$ *then* X *is a* γ *-set.*
- If $\mathfrak{p} = \mathfrak{c}$ *then there is a* γ *-set of cardinality* \mathfrak{c} *.*

Theorem (Gerlits–Nagy 1982)

 X *is a* γ -set then X has strong measure zero.

If Borel Conjecture holds then X is a γ -set if and only if X is countable.

Theorem 2. Let X be a Tychonoff-space. If $E = C(X)$, then the following implications are valid.

$$
E = C(X) \qquad (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi)
$$

$$
\updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow
$$

$$
X \qquad (\alpha) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta) \Rightarrow (\epsilon)
$$

Problem. Is $(\delta) \Rightarrow (\gamma)$ true (in ZFC)? Is there a model of ZFC in which $(\delta) \Rightarrow (\gamma)$ does not hold? لاستأنها والمراجع أنحفظ فالمعارض والمتحرق والمحار

Problem listed as open:

Our answer: No. Yes, any model of $p = c$.

$$
\{V_n:\ n\in\omega\}\subseteq X
$$

 ${V_n : n \in \omega}$ is γ -cover if each $x \in X$ is an element of V_n for all but finitely many n.

$$
\underline{\mathrm{Lim}}\{V_n:\ n\in\omega\}=\bigcup_{n\in\omega}\bigcap_{m\geq n}V_m=\{x\in X:\ (\forall^\infty n\in\omega)\ x\in V_n\}
$$

 ${V_n : n \in \omega}$ is a γ -cover if and only if $X = \underline{\text{Lim}} {V_n : n \in \omega}$.

$$
\underline{\text{Lim}}\{V_n:\ n\in\omega\}=\bigcup_{n\in\omega}\bigcap_{m\geq n}V_m=\{x\in X:\ (\forall^\infty n\in\omega)\ x\in V_n\}
$$

$$
L^{0}(\{V_{n} : n \in \omega\}) = \{V_{n} : n \in \omega\}
$$

\n
$$
L^{1}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in L^{0}(\{V_{i} : i \in \omega\})\}
$$

\n
$$
L^{2}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in L^{1}(\{V_{i} : i \in \omega\})\}
$$

\n
$$
L^{\xi}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in \bigcup_{\eta < \xi} L^{\eta}(\{V_{i} : i \in \omega\})\}
$$

 $\mathrm{L}^{\omega_1}(\{V_n:\ n\in\omega\})$ is the smallest family containing $\mathcal V$ and closed under operator $\underline{\mathrm{Lim}}.$

X is a γ -set \Leftrightarrow for any open ω -cover $\mathcal{V}, \quad X \in \mathrm{L}^1(\mathcal{V})$

$$
X \text{ is a } \delta\text{-set} \quad \Leftrightarrow \quad \text{ for any open } \omega\text{-cover } \mathcal{V}, \quad X \in \mathcal{L}^{\omega_1}(\mathcal{V})
$$

Gerlits J. and Nagy Zs., *Some properties of* $C_p(X)$, *I*, Topology Appl. **14** (1982), 151–161.

Theorem 2. Let X be a Tychonoff-space. If $E = C(X)$, then the following implications are valid.

$$
E = C(X) \qquad (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi)
$$

$$
\updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow
$$

$$
X \qquad (\alpha) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta) \Rightarrow (\epsilon)
$$

Problem. Is $(\delta) \Rightarrow (\gamma)$ true (in ZFC)? Is there a model of ZFC in which $(\delta) \Rightarrow (\gamma)$ does not hold? والمواريع والمتواصل والمعاونة والمتوارد والموارد والمتواطئ

Theorem (Orenshtein–Tsaban 2013)

X is a δ -set if and only if $\overline{A} \subseteq$ partlims(A) for each $A \subseteq C_p(X)$.

Theorem (Galvin–Miller 1984)

- **If** $|X| < p$ *then* X *is a* γ *-set.*
- If $\mathfrak{p} = \mathfrak{c}$ *then there is a* γ -set of cardinality \mathfrak{c} .

Theorem (Gerlits–Nagy 1982)

X *is a* δ*-set then* X *has strong measure zero.*

If Borel Conjecture holds then X is a δ -set if and only if X is countable.

$$
f \in \overline{A} \subseteq C_p(X)
$$

Is there a way to describe f via a sequence of elements of A ?

Theorem (Arkhangeľskii 1976)

 $C_p(X)$ *has countable tightness, i.e., for any* $f \in \overline{A} \subseteq C_p(X)$ *there is countable* $B \subseteq A$ *such that* $f \in \overline{B}$ *.*

A family $K \subseteq \mathcal{P}(\omega)$ is called an ideal if

a) $B \in \mathcal{K}$ for any $B \subseteq A \in \mathcal{K}$, b) $A \cup B \in \mathcal{K}$ for any $A, B \in \mathcal{K}$, c) Fin = $[\omega]^{<\omega} \subseteq \mathcal{K}$, d) $\omega \notin \mathcal{K}$.

 I, J, K are ideals in the following.

$$
\mathcal{A} \subseteq \mathcal{P}(\omega) \qquad \qquad \mathcal{A}^* = \{ A \subseteq \omega : \ \omega \setminus A \in \mathcal{A} \}
$$

 $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a filter if \mathcal{F}^* is an ideal.

A sequence of functions $\langle f_n : n \in \omega \rangle$ converges pointwisely to function f if

 $\langle f_n(x) : n \in \omega \rangle$ converges to $f(x)$ in each $x \in X$, ${n : |f_n(x) - f(x)| > \varepsilon}$ is finite for any $\varepsilon > 0$ and any $x \in X$.

A sequence $\langle f_n : n \in \omega \rangle$ in $C_p(X)$ converges to f with respect to $\mathcal I$ if

$$
\{n: |f_n(x) - f(x)| \ge \varepsilon\}
$$
 is in \mathcal{I} for any $\varepsilon > 0$ and any $x \in X$.

If $\langle f_n : n \in \omega \rangle$ in $C_p(X)$ converges pointwisely to f then it converges with respect to $\mathcal I$ as well.

Is there a way to describe f via a sequence of elements of A ?

Theorem (Cartan 1937)

If $f \in \overline{A} \subseteq C_p(X)$ *then there is a sequence* $\{f_n : n \in \omega\} \subseteq A$ *and an ideal I on natural numbers such that* $\langle f_n : n \in \omega \rangle$ *converges to* f *with respect to* I *.*

Theorem (Cartan 1937)

If $f \in \overline{A} \subseteq C_n(X)$ *then there is a sequence* $\{f_n : n \in \omega\} \subseteq A$ *and an ideal I on natural numbers such that* $\langle f_n : n \in \omega \rangle$ *converges to* f *with respect to* I *.*

 $\mathrm C_p(X)$ has Fréchet-Urysohn property if for any $A \subseteq \mathrm C_p(X)$ and function $f \in \overline{A}$ there is a sequence $\langle f_n : n \in \omega \rangle$ in A converging to f.

P. Borodulin-Nadzieja and B. Farkas 2012

 $C_p(X)$ has *I*-Fréchet-Urysohn property if for any $A \subseteq C_p(X)$ and function $f \in \overline{A}$ there is a sequence $\langle f_n : n \in \omega \rangle$ in A converging to f with respect to I.

shortly FU, FU (\mathcal{I})

P. Borodulin-Nadzieja and B. Farkas 2012

 $C_p(X)$ has *I*-Fréchet-Urysohn property if for any $A \subseteq C_p(X)$ and function $f \in \overline{A}$ there is a sequence $\langle f_n : n \in \omega \rangle$ in A converging to f with respect to I.

Theorem (essentially Borodulin-Nadzieja–Farkas 2012) $\text{non}(FU(\mathcal{I})) = \mathfrak{p}_K(\mathcal{I}).$

$$
\mathtt{Fin} \subseteq \mathcal{A} \subseteq \mathcal{P}(\omega)
$$

 \mathcal{A}^* has FIP \Leftrightarrow A has FUP \Leftrightarrow $\mathcal{A} \subseteq \mathcal{I}$ for some \mathcal{I}

 \mathcal{A}^* has a pseudointersection \Leftrightarrow \mathcal{A} has a pseudounion \Leftrightarrow $\mathcal{A} \leq_K$ Fin

Katětov order

 $\mathcal{A}_1\leq_K\mathcal{A}_2$ if there is a function $\varphi\colon\omega\to\omega$ such that $\varphi^{-1}(A)\in\mathcal{A}_2$ for each $A\in\mathcal{A}_1.$

If $A_1 \subseteq A_2$ then $A_1 \leq_K A_2$.

Pseudointersection numbers $\mathfrak p$ and ${\tt cov}^*(\mathcal I)$

$$
\mathfrak{p} \qquad \qquad = \quad \min \{|\mathcal{A}| : \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has FUP } \wedge \mathcal{A} \text{ does not have a pseudounion}\}
$$

$$
\mathsf{cov}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \ \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ does not have a pseudounion}\}
$$

Convention: $\min \emptyset = +\infty$

Pseudointersection number $\mathfrak{p}_K(\mathcal{J})$

$$
\mathfrak{p} = \min\{|\mathcal{A}|: \ \mathcal{A}\subseteq \mathcal{P}(\omega) \text{ has FUP } \wedge \mathcal{A} \not\leq_K \text{Fin}\}
$$

$$
\mathfrak{p}_K(\mathcal{J}) = \min\{|\mathcal{A}|: \ \mathcal{A}\subseteq \mathcal{P}(\omega) \text{ has FUP } \wedge \mathcal{A} \not\leq_K \mathcal{J}\}
$$

Proposition (J.S.) $min{p_K(\mathcal{I}), cov^*(\mathcal{I})} = p.$

Problem (Borodulin-Nadzieja–Farkas 2012) *Is* $p_K(\mathcal{J}) < b$ *for each analytic (P-)ideal* \mathcal{J} *?*

Proposition (J.Š.)

If \mathcal{J} *is a meager* P-ideal then $\mathfrak{p}_K(\mathcal{J}) \leq \mathfrak{b}$ *.*

Theorem (Borodulin-Nadzieja–Farkas 2012) In the Cohen real model $V^{\mathbb{C}_{\omega_2}}$ the following hold.

- (1) *There is a meager ideal I* with $p_K(\mathcal{I}) = \omega_2$.
- (2) $\mathfrak{p}_{\mathbf{K}}(\mathcal{J}) = \omega_1$ *for every* F_{σ} *ideal* \mathcal{J} *and every analytic P-ideal* \mathcal{J} *.*

Let $\mathcal{I}_1 \leq_K \mathcal{I}_2$.

If $C_p(X)$ has \mathcal{I}_1 -Fréchet-Urysohn property then $C_p(X)$ has \mathcal{I}_2 -Fréchet-Urysohn property.

F F

Hrušák M., Katětov order on Borel ideals, Arch. Math. Logic 56 (2017), 831–847.

Brendle J., Farkas B. and Verner J., *Towers in filters, cardinal invariants, and Luzin type families,* J. Symbolic Logic **83** (2018), 1013-–1062.

Katětov order

 $\mathrm{C}_p(X)$

 $C_p(X)$

 $\{V_n: n \in \omega\} \subseteq X$

 ${V_n : n \in \omega}$ is a γ -cover if each $x \in X$ is an element of V_n for all but finitely many n.

 ${V_n : n \in \omega}$ is a γ -cover if ${n : x \notin V_n}$ is finite for each $x \in X$.

 ${V_n : n \in \omega}$ is an $\mathcal{I}\text{-}\gamma$ -cover if ${n : x \notin V_n}$ is in \mathcal{I} for each $x \in X$.

X is a γ -set if any open ω -cover of X contains a γ -subcover of X.

Topological space X is an $[\Omega, \mathcal{J}\text{-}\Gamma]$ -space if for every open ω -cover V there is a $\mathcal{J}\text{-}\gamma$ cover ${V_m : m \in \omega} \subset V$.

Proposition (J.Š.)

- (1) *If* $C_p(X)$ *has* \mathcal{J} *-Fréchet-Urysohn property then* X *is an* $[\Omega, \mathcal{J}$ *-* $\Gamma]$ *-space.*
- (2) $\text{non}([\frac{\Omega}{\mathcal{J}\text{-}\Gamma}]) = \mathfrak{p}_{K}(\mathcal{J}).$

X

$$
\underline{\text{Lim}}\{V_n:\ n\in\omega\}=\bigcup_{n\in\omega}\bigcap_{m\geq n}V_m=\{x\in X:\ (\forall^\infty n\in\omega)\ x\in V_n\}
$$

$$
L^{0}(\{V_{n} : n \in \omega\}) = \{V_{n} : n \in \omega\}
$$

\n
$$
L^{1}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in L^{0}(\{V_{i} : i \in \omega\})\}
$$

\n
$$
L^{2}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in L^{1}(\{V_{i} : i \in \omega\})\}
$$

\n
$$
L^{\xi}(\{V_{n} : n \in \omega\}) = \{\underline{\text{Lim}}\{W_{n} : n \in \omega\} : (\forall n \in \omega) W_{n} \in \bigcup_{\eta < \xi} L^{\eta}(\{V_{i} : i \in \omega\})\}
$$

 $\mathrm{L}^{\omega_1}(\{V_n:\ n\in\omega\})$ is the smallest family containing $\mathcal V$ and closed under operator $\underline{\mathrm{Lim}}.$

X is a γ -set \Leftrightarrow for any open ω -cover $\mathcal{V}, \quad X \in \mathrm{L}^1(\mathcal{V})$

$$
X \text{ is a } \delta\text{-set} \quad \Leftrightarrow \quad \text{ for any open } \omega\text{-cover } \mathcal{V}, \quad X \in \mathcal{L}^{\omega_1}(\mathcal{V})
$$

Main result

Theorem 2. Let X be a Tychonoff-space. If $E = C(X)$, then the following implications are valid.

> $E = C(X)$ (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \mathbf{r} \mathbf{u} \mathcal{L} and \mathcal{L} $\downarrow \downarrow$ 1 \boldsymbol{x} $(\alpha) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta) \Rightarrow (\epsilon)$

Problem. Is $(\delta) \Rightarrow (\gamma)$ true (in ZFC)? Is there a model of ZFC in which $(\delta) \Rightarrow (\gamma)$ does not hold?

If $p = c$ then there is an $[\Omega, \text{Ran}-\Gamma]$ -space $A \subseteq \mathcal{P}(\omega)$ which is not a γ -set.

```
If CH holds then there is an [\Omega, \text{conv-}\Gamma]-space A \subseteq \mathcal{P}(\omega)which is not an [\Omega, \text{Ran-}\Gamma]-space.
```
If **CH** holds and $\beta < \alpha$ then there is an $[\Omega, \text{Fin}^{\alpha} \cdot \Gamma]$ -space $A \subseteq \mathcal{P}(\omega)$ which is not an $\big\lceil \Omega, \mathrm{Fin}^\beta\text{-}\Gamma \big\rceil$ -space.

If **CH** holds then there is a δ -set $A \subseteq \mathcal{P}(\omega)$ which is not an $\big[\Omega,\texttt{Fin}^\xi\texttt{-}\Gamma\big]$ -space.

Katětov ideals

$$
A \in \text{Fin}^2
$$

$$
\begin{array}{c}\n\{\eta : \{\text{m} : (\text{n}, \text{m}) \in A\} \not\in \text{Fin}\} \in \text{Fin}\n\end{array}
$$

Fubini product $\text{Fin}\times\text{Fin}$

$$
\omega
$$

 X is an $\big[\Omega,\texttt{Fin}^2\text{-}\Gamma\big]$ -space \Leftrightarrow for any ω -cover $\mathcal V$ we have $X\in\mathrm{L}^2(\mathcal V).$

⇒

- \blacktriangleright Take ω -cover \mathcal{V} .
- \blacktriangleright Pick Fin²-γ-cover { $V_{n,m}$: $n, m \in \omega$ } ⊆ \mathcal{V} .
- ► Compute $W_n = \underline{\text{Lim}}\{V_{n,m} : m \in \omega\} = \bigcup_{m \in \omega} \bigcap_{k \ge m} V_{n,k}.$
- ▶ Thus $W_n \in L^1(\mathcal{V})$.
- Note that $X = \underline{\text{Lim}}\{W_n : n \in \omega\}.$

 X is an $\big[\Omega,\texttt{Fin}^2\text{-}\Gamma\big]$ -space \Leftrightarrow for any ω -cover $\mathcal V$ we have $X\in\mathrm{L}^2(\mathcal V).$

⇐

 \blacktriangleright Take ω -cover \mathcal{V} .

► Pick $W_n \in L^1(\mathcal{V})$ such that $X = \underline{\text{Lim}}\{W_n : n \in \omega\} = \bigcup_{k \in \omega} \bigcap_{k \geq n}$ W_k .

IF There are { $V_{n,m}$: $m \in \omega$ } ⊆ V such that $W_n = \underline{\text{Lim}}\{V_{n,m}$: $m \in \omega\}$.

Then $\{V_{n,m} : n, m \in \omega\}$ is a Fin²- γ -cover of X.

Main result

Theorem 2. Let X be a Tychonoff-space. If $E = C(X)$, then the following implications are valid.

> $E = C(X)$ (i) \Rightarrow (ii) \Rightarrow (iii) \Leftrightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \mathbf{r} \mathbf{u} \mathcal{L} and \mathcal{L} $\downarrow \downarrow$ 1 \boldsymbol{x} $(\alpha) \Rightarrow (\beta) \Rightarrow (\gamma) \Rightarrow (\delta) \Rightarrow (\epsilon)$

Problem. Is $(\delta) \Rightarrow (\gamma)$ true (in ZFC)? Is there a model of ZFC in which $(\delta) \Rightarrow (\gamma)$ does not hold?

If $p = c$ then there is an $[\Omega, \text{Ran}-\Gamma]$ -space $A \subseteq \mathcal{P}(\omega)$ which is not a γ -set.

```
If CH holds then there is an [\Omega, \text{conv-}\Gamma]-space A \subseteq \mathcal{P}(\omega)which is not an [\Omega, \text{Ran-}\Gamma]-space.
```
If **CH** holds and $\beta < \alpha$ then there is an $[\Omega, \text{Fin}^{\alpha} \cdot \Gamma]$ -space $A \subseteq \mathcal{P}(\omega)$ which is not an $\big\lceil \Omega, \mathrm{Fin}^\beta\text{-}\Gamma \big\rceil$ -space.

If **CH** holds then there is a δ -set $A \subseteq \mathcal{P}(\omega)$ which is not an $\big[\Omega,\texttt{Fin}^\xi\texttt{-}\Gamma\big]$ -space.

A brief sketch of the proof of main result

Family $\mathcal A\subseteq \mathcal P(\omega)$ is <code>TALL</code> if for any $E\in [\omega]^\omega$ there is $A\in \mathcal A$ such that $A\cap E$ is infinite (A[∗] does not have a pseudointersection).

 $\mathcal{A}\subseteq\mathcal{P}(\omega)$ has $\text{FUP},$ if for any $A_0,\ldots,A_k\in\mathcal{A},$ the set $\omega\setminus\bigcup_{i=0}^kA_i$ is infinite $(\mathcal{A}^*$ has FIP).

Lemma (folklore)

If $A \subseteq \mathcal{P}(\omega)$ *is* TALL *with* FUP, then *A is not* $a \gamma$ -set.

Lemma (Galvin–Miller 1984)

If V *is an open* ω -cover of Fin then there is an increasing sequence $\langle k_n : n \in \omega \rangle$ and *a family* $\{V_n : n \in \omega\} \subset V$ *of distinct sets such that* $a \in V_n$ *for any* $a \cap (k_n, k_{n+1}) = \emptyset$ *.*

Theorem

Let J be TALL. If $\mathfrak{p} = \mathfrak{c}$ *then there is an* $[\Omega, \mathcal{J}$ *-* $\Gamma]$ *-space* $A \subseteq \mathcal{P}(\omega)$ *which is not a* γ *-set.*

Proof

- $\blacktriangleright \{k_\alpha: \alpha < \mathfrak{c}\}\subseteq \omega_\omega$ all increasing functions, $\{c_\alpha: \alpha < \mathfrak{c}\}\subseteq [\omega]^\omega$ all infinite sets.
- \triangleright We construct $A = \{a_{\alpha} : \alpha < \mathfrak{c}\}\cup \text{Fin}$ such that

(1)
$$
a_{\alpha} \subseteq c_{\alpha}
$$
,
(2) $\{j \in \omega : [k_{\alpha}(j), k_{\alpha}(j+1)) \cap a_{\alpha} \neq \emptyset\} \in \mathcal{J}$.

Applications - summary

(1) Gerlits–Nagy problem on γ and δ .

If $p = c$ then there is a δ -set which is not a γ -set.

(2) Borodulin-Nadzieja–Farkas pseudointersection number $\mathfrak{p}_K(\mathcal{J})$.

$$
\quad \blacktriangleright \ \text{non}(\text{FU}(\mathcal{I}))=\mathfrak{p}_K(\mathcal{I}).
$$

$$
\quad \blacktriangleright \ \ \text{non}(\textstyle{\big[\frac{\Omega}{\mathcal{J}\text{-}\Gamma}\big]})=\mathfrak{p}_K(\mathcal{J}).
$$

$$
\blacktriangleright \ \min\{\mathfrak{p}_K(\mathcal{I}), \mathsf{cov}^*(\mathcal{I})\} = \mathfrak{p}.
$$

What is next?

Attempting:

- \blacktriangleright To decide whether $FU(\mathcal{I})$ are different for different standard critical ideals under **CH**.
- Similarly for $\begin{bmatrix} \Omega \\ \mathcal{J}\text{-}\Gamma \end{bmatrix}$.
- \triangleright To eliminate some assumptions on ideals in counterexamples constructions.
- $\blacktriangleright \ \big[\frac{\Omega}{\mathcal{Z}\text{-}\Gamma}\big]$ does not imply δ . Does it imply Rothberger property (strong measure zero)?

. . .

- ► Consequences on selection principles $S_1(\Omega^{ct}, \mathcal{J}\text{-}\Gamma)$, $S_1(\mathcal{I}\text{-}\Gamma, \mathcal{J}\text{-}\Gamma)$.
- In It is it consistent that $p_K(\mathcal{J}) > p$ for some nice definable ideal \mathcal{J} ?

Arkhangel' skii A.V., *On some topological spaces that occur in functional analysis,* Uspekhi Mat. Nauk **31** (1976), 17–32.

Borodulin–Nadzieja P. and Farkas B., *Cardinal coefficients associated to certain orders on ideals,* Arch. Math. Logic **51** (2012), 187–202.

Brendle J. and Flašková J., *Generic existence of ultrafilters on the natural numbers*, Fund. Math. 263 (2017), 201–245.

Brendle J., Farkas B. and Verner J., *Towers in filters, cardinal invariants, and Luzin type families,* J. Symbolic Logic **83** (2018), 1013-–1062.

Cartan H., *Theorie des filtres, ´* C. R. Acad. Sci. Paris **205** (1937), 595–598.

Cartan H., *Filtres et ultrafiltres,* C. R. Acad. Sci. Paris **205** (1937), 777–779.

Gerlits J. and Nagy Zs., *Some properties of* $C_p(X)$, *I*, Topology Appl. **14** (1982), 151–161.

Galvin F. and Miller A.W., γ*-sets and other singular sets of real numbers,* Topology Appl. **17** (1984), 145–155.

Hrušák M., Katětov order on Borel ideals, Arch. Math. Logic 56 (2017), 831–847.

Katětov M., On descriptive classification of functions, in: General Topology and its Relations to Modern Analysis and Algebra, Proceedings of the Third Prague Topological Symposium, Prague, 1972, 235–242.

Miller A., *On* γ*-sets,* plenary lecture, Second Workshop on Coverings, Selections, and Games in Topology, Lecce, Italy, 19–22 Dec 2005. Lecture notes: [http://u.cs.biu.ac.il/˜tsaban/SPMC05/Miller.pdf.](http://u.cs.biu.ac.il/~tsaban/SPMC05/Miller.pdf.)

Orenshtein T. and Tsaban B., *Pointwise convergence of partial functions: The Gerlits–Nagy Problem,* Adv. Math. **232** (2013), 311–326.

Šupina J., Pseudointersection numbers, ideal slaloms, topological spaces and cardinal inequalities, submitted.

Thanks for Your attention!